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Introduction

Survival analysis is an old subfield of statistics, dating back to 
the development of life tables (1). The use of spatial survival 
methods in cancer research has become more widespread 
due to the increased recognition of the association between 
the spatial location and health outcomes, increased 
availability of spatial data and improvements in computing 
power. Health initiatives, such as Healthy People 2020 in 
the United States (2) and the World Health Organization 
Health Equity Monitor (3) aim to eliminate cancer health 
disparities, such as those due to geographical location.

The predictors, such as racial composition (4) and socio-
economic status (5) can also have a geographical influence 
on survival (6).

Investigating spatial variations in survival patterns is 
important since it provides evidence to identify areas with 
poorer cancer outcomes requiring attention, thus assisting 
public health professionals in their decision making. 
The geographical location can be used as a surrogate 
for environmental or lifestyle factors that may influence 

population cancer survival. Bayesian approaches are 
increasingly commonly used for modelling small area spatial 
survival data. Advantages of Bayesian models in comparison 
to other methods include the ease of drawing strength from 
neighboring regions, usually via spatially correlated or 
uncorrelated random effects. Also, Bayesian methods enable 
the development of more complex models, inferences and 
analyses. 

In this paper we provide an overview of the fundamental 
and more advanced Bayesian spatial survival methodologies 
that can be applied to cancer research. The paper is 
structured as follows. In section 2, we describe some 
fundamental survival analysis concepts. In section 3, we 
introduce current Bayesian models that describe the 
spatial variation in survival, such as using random effects 
(subsection 3.1), cure-rates (subsection 3.2) and direct 
spatial models (subsection 3.3). In section 4, we discuss 
various software for spatial survival analysis. Section 5 
includes a case study for a spatial survival model with 
random effects using the Louisiana prostate cancer 
Surveillance, Epidemiology and End Results (SEER) data 
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from the United States (7). In section 6 we present some 
conclusion.

Fundamentals of survival analysis

Survival analysis refers to the analysis of the time taken for 
a particular event to occur. This form of analysis attempts 
to describe the distribution of the survival time and 
understand differences in the survival time, perhaps due 
to demographics, risk factors or spatial location. Both the 
time of origin and the event of interest must be precisely 
specified, so that the length of time from the origin to 
the endpoint can be calculated. For example, for cancer 
patients, the origin could be time of cancer diagnosis and 
the endpoint could be death due to the particular cancer 
studied. Another example would be the point of origin 
being the start of cancer treatment and the endpoint being 
cancer recurrence. 

Survival can be described in terms of the survival 
function, the hazard function or the likelihood. We first 
describe how these functions relate to each other and then 
we discuss the distributions that may be used.

Let T denote the random variable representing the time 
to event. The cumulative distribution function of T, denoted 
F(t), is defined as F(t) = P(T ≤ t), which is an increasing 
function of t, ranging from 0 to 1. The survival function 
S(t) is defined as the probability of survival up to time t,  
S(t) = P(T > t) = 1− F(t), which is a decreasing function 
ranging from 1 to 0. The probability density function is 
defined as:

( ) ( ) / ( ) /f t dF t dt dS t dt= = − 	 [1]

The cumulative density functions and survival functions 
can be expressed in terms of the probability distribution 
function as follows:

[2]
0

( ) ( ) , ( ) ( )
t

t

F t f u du S t f u du
∞

= =∫ ∫

The hazard function ( )h t  represents the instantaneous 
probability of having an event at time t, given that one has 
survived up to time t. In particular,

[3]
0
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where ( )h t δ  is approximately the conditional probability 
that the event occurs within the interval [t, t +δ] given that 
the event has not occurred before time t.

The hazard function can also be expressed as a function 

of the survival function as follows:

( ) log( ( ) .h t d S t dt= −  	 [4]

Conversely, the cumulative hazard function is related to 
the survival function as follows: ( ) exp( ( ))S t H t= − .

Common choices for the distribution of time to endpoint 
are among the Weibull or extreme value, lognormal or 
gamma families of distributions. Hence a basic parametric 
survival data model consists of an endpoint distribution, 
such as the exponential, Weibull and Pareto distributions, 
and the nature of the survival experience is modelled via 
assumptions about the parameters of that distribution.

The Weibull distribution is commonly used for time 
to event data since it can model a decreasing, constant or 
increasing failure rate over time, if its shape parameter μ 
is less than, equal to or greater than 1 respectively. The 
exponential distribution is a special case of the Weibull 
distribution, where the shape parameter is 1.

The probability of an endpoint at time ti under the 
Weibull distribution is specified by:

1( ) exp( )i if t t tµ µµλ λ−= −
	

[5]

The survival and hazard functions derived from this are:

0
( ) 1 ( ) exp( )it
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This allows a straightforward specification of the model 
components for this distribution:

Covariates and random effects can be included within λ 
and the parameter μ provides the shape of the distribution 
as it will be discussed in greater detail below. 

A particular complexity of survival data is censoring, 
which usually occurs when the survival times are not 
known precisely, but are known to fall within a certain time 
interval. Censoring can arise from patient drop out, loss to 
follow up and competing risks, such as deaths from other 
causes. Right, left and interval censoring occur when the 
lower limit, upper limit or an interval only are known for 
the true event times, respectively. 

Survival analysis methods can be extended to adjust for 
several risk factors. Weibull regression is one of the most 
popular parametric regression techniques. It assumes a 
Weibull distribution for the density of survival times, and 
allows the covariates to be fit linearly on the log of its scale 
parameter. A more general form is the accelerated failure 
time models (AFT), in which log(T) is modeled as a linear 
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function of the covariates plus an error term. In AFT 
models, the survival times are assumed to have a Weibull, 
log logistic or log normal distribution.

Another popular regression technique for survival 
analysis is the Cox proportional hazard model, which 
estimates the hazard rate, assuming a constant hazard 
ratio over time. In this model, the hazard is a product of 
a baseline hazard and an exponential function of a linear 
combination of predictors. This model does not impose 
a parametric form on the survival times. This model is 
expressed by the hazard function ( )h t  as follows:

0 1 1 2 2( ) ( ) exp( )p ph t h t x x xβ β β= + +
	

[8]

where t represents the survival times, ( )h t  is the hazard 

function, 1 2, , , pβ β β  are the coefficients measuring the 
effects of the covariates, 0h  is the baseline hazard when 
all the covariates are zero. The model assumes a constant 
hazard ratio over time. The exponentiated coefficients, 
exp( )iβ  are called hazard ratios. A hazard ratio greater than 
1 indicates that, as the covariate increases, the event hazard 
increases, and therefore the length of survival decreases.

For a more detailed review of fundamental survival 
analysis models using frequentist approaches, see Kleinbaum 
and Klein (8). Reviews of Bayesian survival methods 
can be found in Gustavson (9), Ibrahaim et al. (10) and  
Banerjee (11).

Including spatial effects in survival models

Random effects models

Often location data are often available at a regional level 
(county, census tract, or zip code). “Spatial survival models 
include random effects to help account for the spatial 
variability in survival. Usually, each region in the study 
area represents a level of the random effect and the effect 
for each level is drawn from a distribution. The random 
effects are added to the linear predictor component of 
the model. Random effects may account for spatially 
correlated and uncorrelated effects. Spatial correlations 
occur when neighboring regions have similar outcomes. 
Spatially uncorrelated random effects are independent of 
neighboring regions. The mean of the random variable 
is therefore constrained to zero to avoid identifiability 
problems. Therefore, the uncorrelated random effect jν  is 
modeled using a Normal prior with mean 0 and variance 2

νσ , 
 ( )20,j N νν σ∼ . 

Spatially correlated random effects can be employed 

to account for spatial dependency. Several models exist to 
describe the spatial dependencies. Besag et al. (12) proposed 
an intrinsic autoregressive model, often referred to as the 
conditional autoregressive (CAR) model (13), where the 
spatial effect of a particular region depends on the effects 
of neighboring regions. The random effect ju  is the 
spatially structured random effect, assumed to have a CAR 
distribution:

[9]2
1( , )

j

k
k u

i
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u
u N

δ
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∑
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where jδ  is the number of neighboring counties who 
share boundaries with the thj  one, and 2

uσ is the variance 
parameter for the spatially structured effect. The random 
effects are added to the linear predictor component of the 
model. For example, in the context of a Weibull survival 
model, assuming a Weibull (μ, λi) distribution for the 
survival times, the covariates and spatial random effects are 
linked to the log(λi) parameter as follows:

'
0 , ,log( )ij i j i j i i jv uλ β ∈ ∈= + + +βm

	
[10]

where i  represents the individual, j  represents the 
county, β0 is the intercept, '

1( , )pβ β=β   is the vector 
of regression parameters, p is the number of covariates 
and 1 '( , , )p

i i im m=m   is a vector of covariates, jν  is the 
uncorrelated random effect and ju  is the spatially correlated 
random effect.

The convolution model, also known as the Besag, York 
and Molié (BYM) model (13,14) includes both uncorrelated 
and spatially correlated random effects.”

Spatial survival methods with random effects have been 
used for various cancers, such as prostate cancer (15,16) 
leukemia (17), breast cancer (18,19), and cancer control (20). 

Cure rates

One of the assumptions in the standard survival models is 
that all the subjects die from the cancer of interest and all 
individuals who do not experience the event are considered 
censored. The fact that for some cancer types, the death 
rates may approach normal rates after a certain period 
of time, led to the development of cure rate models (21), 
which assume that a certain fraction of the cancerous 
population are considered cured from cancer, while the rest 
are considered noncured. 

The most popular cure rate model is the mixture  
model (21), which assumes that the population consists of 
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a group that will be cured from the disease of interest and 
a group of non-cured individuals. Although the mixture 
cure-rates model is able to provide estimates for both 
the proportion of subjects who are cured and the survival 
function for the uncured subjects, caution is needed since 
the estimation of the cure rate fraction can be dependent 
on the length of follow-up time and parameters may not be 
identifiable for some datasets (22). It has also been shown 
that some subjects may experience the same death rates as 
the general population, however they have higher death 
rates from the cancer of interest and lower rates from other 
causes. This is the case for subjects from higher socio-
economic classes who have a higher rate of breast cancer but 
lower rate of other diseases (23). Possible solutions to these 
issues include the use of cause specific deaths, examination 
of the likelihood function and including a sufficiently large 
population and follow-up time. In addition, understanding 
the biological mechanisms that lead to disease manifestation 
may provide information on the appropriateness of the 
model assumptions used. If p is the probability of being 
cured, then the population survival function is calculated 
as a mixture S(t) = p+(1-p)S0(t)., where S0(t)=P(T>t) is 
the survivor function in the noncured group and T is 
the lifetime of the individual. These models can be fitted 
with covariates, allowing them to explain the survival of 
noncured subjects or the probability of being cured or both. 

There is a growing literature on the development of 
spatial survival models using cure rates, mostly developed 
by including the spatial heterogeneity via uncorrelated and 
spatially correlated random effects, such as those applied 
to colon cancer (24) or smoking cessation (25). Rua and  
Dey (26) developed a class of hierarchical Bayesian 
models for spatially or spatio-temporal data integrating 
cure rates and spatio-temporal random effects and having 
the proportional hazards and proportional odds models 
as special cases. The methodology is illustrated using 
melanoma cancer data from the Surveillance, Epidemiology 
and End Results SEER database. A second class of cure 
rate models originates from the cancer model developed by 
Yakovlev (27) and takes into consideration the underlying 
processes of disease manifestations, assuming that a subject 
is at risk of failure only after exposure to some latent 
risks, otherwise being considered cured (28). More recent 
developments extend these cure rate models for spatially 
correlated survival data including both spatially correlated 
and uncorrelated random effects. Li et al. (29) used SEER 
colon cancer data and employed a generalized extreme 
value distribution on the survival time, modeling nonlinear 

covariate effects on the cure rate and considering the spatial 
variations. A unifying general class of cure rate models which 
includes the standard mixture and latent factor cure rates 
model as special cased was developed by Cooner et al. (30).  
This general model has also been used in a Bayesian 
framework for county level aggregated data enabling 
flexible modeling of spatial associations using a univariate 
or bivariate latent spatial cure rate model (31). This spatial 
model has been applied to breast cancer data from the 
SEER registry in Iowa, the results suggesting differential 
survival experience for various regions. 

In modeling the spatial variation in cure rate models 
using random effects, there are several choices that can be 
made. One can assume that the cure fractions are spatially 
associated or alternatively, the spatial variability can be 
considered in the model regressors. Models with spatial 
random effects in both components can also be considered, 
provided such effects are estimable (31). The cure rate 
models can been used to model recurrent events which 
are frequent for cancer data, such as recurrences after 
breast cancer (32) or leukemia recurrence (33). Extension 
to a spatial cure rate multivariate survival model has been 
proposed and applied to prostate cancer data (15). The 
multivariate models can be applied to jointly model several 
time-to-event variables, such as time of cancer relapse to 
various organs or time to cancer relapse and time to death. 

Direct spatial models

Although widely used for spatial survival models, random 
effects are limited in their interpretability due to their 
wide range on the real line. Usually, higher random effects 
for an area are an indication of an increased risk, and can 
be interpreted in comparison with each other to highlight 
areas of higher risk, but they are not a direct estimate of the 
risk in the area. Alternative models for spatial survival have 
been proposed using spatially explicit survival models, with 
application to prostate cancer data from the SEER registry 
(22,34-36). The definition of the survival, density and 
hazard functions can be broadened by explicitly modeling 
the spatial dependency using direct derivations of these 
functions and their marginals and conditionals as proposed 
in Onicescu and Lawson (36). 

The spatially explicit survival for area AS at time t* can 
be defined as * *

, ( , ) ( , )s t s sS A t P s A t t= ∈ > , where s is a spatial 
location defined by latitude and longitude, and t is the time.

Assuming independence between space and time, the 
space-time probability distribution function can be defined 
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as the product between the temporal and spatial distribution 
functions. The temporal component probability density 
function can be assumed to have a distribution suitable for 
time to event data, such as the Weibull distribution (23). 
For specifying the spatial distribution, one needs to define 
the spatial dependence structure, which is of fundamental 
importance to all spatially referenced data. There are a 
wide variety of choices that can be used to specify the 
spatial model. One approach is to assume a geostatistical 
model whereby the spatial component is assumed to 
follow a Gaussian process with spatial dependence defined 
by a covariance function, usually assumed to be second 
order stationary, with the covariance between any two 
locations depending on the distance between them (37). 
However, spatial modeling using the covariance function 
is computationally restrictive due to the necessity for 
inversion of a potentially large positive definite matrix. One 
alternative to directly specifying the covariance function 
is to assume a process convolution model (38), which is 
based on the idea that any stationary Gaussian process can 
be expressed as the convolution of a white noise process 

( )x s  with a specified kernel ( )k s . The advantage of the 
convolution based models lies in their computational 
simplicity. In addition, they always induce valid covariance 
functions and, due to their nonparametric nature, have 
considerable flexibility versus a fully parametric approach. 
As described in Higdon et al. (38), the model for the spatial 
process is determined by specifying the white noise process 
and the smoothing kernel. For approximate calculations, a 
fixed number of grid points are generated over the polygon 
region. A common choice for the smoothing kernel is the 
Gaussian kernel, since it induces a covariance matrix which 
is a function of the squared distance between two spatial 
locations and gradually dies off with increased distance. The 
Gaussian process can be constructed over a spatial region 
as the weighted average over the grid points in the region 
of the white noise process and the gaussian kernel (38). 
Alternative formulations have been used for aggregated data 
by using the centroid location for each region (36). 

The spatial explicit model has also been used assuming 
an accelerated failure time (AFT) model and allowing for 
dependency between space and time via random effects (35). 
An additional extension of the spatially explicit model was 
performed by allowing the relation with the explanatory 
covariates to be spatially adaptive using a threshold 
conditional autoregressive (CAR) model (22), further 
extended to allow the inclusion of multiple threshold levels. 
All models were applied to prostate cancer survival data 

from the Louisiana SEER registry, which holds individual 
records linked to vital outcomes and is geocoded at the 
parish level.

Software for spatial survival

There are many R packages that can implement survival 
models, but only a few of them allow the inclusion of 
spatial effects. The spBayesSurv R package (39) implements 
proportional odds, proportional hazards and accelerated 
failure time models in a Bayesian approach using Markov 
chain Monte Carlo techniques. BayesX (40) is a software 
for estimating structured additive regression models with 
spatial random effects, which can be used for a Cox hazard 
regression models for continuous time survival analysis, 
in which the baseline hazard rate is estimated jointly with 
the other effects. It also allows time varying covariates, and 
any combination of left, right or interval censoring. For 
the estimation of the spatial random effects, BayesX uses 
Matern splines. R2BayesX is an R interface for BayesX (41).

The most popular software for modelling spatial survival 
is WinBUGS or OpenBUGS, which can implement the 
most widely used spatial survival models, such as Weibull 
distributed time to event survival data, accelerated failure 
times (AFT) and Cox proportional hazards models. In the 
next section we present an example analysis for Weibull 
distributed time to event survival data analysis.

Case study

For our application we consider the prostate cancer registry 
data from the SEER Louisiana registry for the years 
2007 through 2010, which was used previously for the 
development of spatially explicit survival models (35,36). 
The data consists of 13,835 subjects, aggregated into  
64 parishes in Louisiana. We selected only observations 
with complete dates available and excluded 437 subjects 
with survival time zero, considered unknown. For the 
analysis, we included 11,943 subjects with non missing 
covariates. The time to event outcome was the time to 
death from any causes as the prostate only cancer deaths 
were too infrequent (38). The follow-up cutoff date was 
December 31st, 2010. Any patient that died after the follow-
up cut-off date was recoded to alive as of the cut-off date. A 
person alive at study termination or lost to follow-up at any 
time during the study was considered censored (42).

The use of this data is motivated by the high variability 
of the survival probabilities in the Louisiana parishes, as 
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illustrated by the Kaplan-Meier survival curves for selected 
parishes displayed in Figure 1.

The following model implements a Bayesian survival 
analysis with Weibull distributed time to events. 

The likelihood is specified using the zeros tricks in 
WinBUGS (34,43). We denote log( )i il L= , where thi  is 
the contribution to the likelihood of the thi individual. 
The likelihood can be written as a Poisson distribution as 
follows: 

[11]
0

( )

11

( )( | )
0!

i i

n n
l l i

ii

lf e eθ − −

==

−
= =∏y


where y is the time to event outcome vector and θ is the 
vector of parameters. 

A constant C can be added to ensure that −li is positive, a, 
as follows:
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The WinBUGS code for this model implementation is 
included in the Appendix 1. The code can be adapted for 
accelerated failure time models (AFT). A Bayesian spatial 
survival analysis using an AFT model for prostate cancer 
and sample WinBUGS code is provided by Zhang and 
Lawson (44). 

Table 1 displays the coefficient estimates and 95% 
credible intervals. Black race (versus white and other 
races), stage (localized/regional versus distant based on 
SEER Historic Stage A), grade (1 and 2 versus 3 and 4) and 
increased age at diagnosis are associated with lower survival, 
while being married is associated with higher survival. 
The description of the variables can be found in the SEER 
Research Data description (42).

Figure 2 displays the sum of the uncorrelated and 
spatially correlated random effects. 

The sum of random effects represents county specific 
changes of the log scale parameter log(λ) of the Weibull 
distribution. Higher random effects represent lower 
survival.

Counties with higher risk are mostly in the south-central 
part of the state. Figure 3 displays the spatially adjusted 
survival function, showing survival in all counties was higher 
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Figure 1 Kaplan Meier survival curves for selected Louisiana 
parishes.

Table 1 Parameter estimates and 95% credible intervals

Variable Estimate 95% CI

Intercept −7.04 (−7.05, −6.72)

Black (versus white and other races) 0.41 (0.26, 0.57)

Married (versus not married) −0.40 (−0.55, −0.24)

Stage Localized/regional versus 
distant

1.93 (1.73, 2.13)

Grade (1 and 2 versus 3 and 4) 0.22 (0.059, 0.39)

Age at diagnosis 0.71 (0.64, 0.79)

[−0.2,−0.05)(6)
[−0.05,0)(25)
[0,0.05)(28)
[0.05,0.2](5)

Figure 2 Estimated uncorrelated and spatially correlated random 
effects for Louisiana parishes.
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than 90% after 40 months. 

Conclusion

In this article, we provided a review of the spatial statistical 
models available for cancer survival, which is gaining 
prominence in the analysis of cancer data due to the 
availability of geographically reference data. The majority 
of the techniques use conditionally autoregressive (CAR) 
models for accounting for spatial variability, which is aligned 
with the Bayesian approach. Software for the spatial survival 
models include WinBUGS and R packages, although the 
algorithms can be implemented in a variety of software. A 
case study is included using the SEER prostate cancer data 
as an example of a spatial survival data analysis and coding. 

Acknowledgments

Funding: None.

Footnote

Provenance and Peer Review: This article was commissioned by 
the Guest Editors (Peter Baade and Susanna Cramb) for the 
series “Spatial Patterns in Cancer Epidemiology” published 
in Annals of Cancer Epidemiology. The article has undergone 
external peer review. 

Conflicts of Interest: Both authors have completed the 
ICMJE uniform disclosure form (available at http://dx.doi.
org/10.21037/ace-19-32). The series “Spatial Patterns in 

Cancer Epidemiology” was commissioned by the editorial 
office without any funding or sponsorship. The authors 
have no other conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Cutler SJ, Ederer F. Maximum utilization of the life table 
method in analyzing survival. J Chronic Dis 1958;8:699-712.

2.	 U.S. Department of Health and Human Services. Healthy 
People 2020. 2014. Available online: https://www.
healthypeople.gov. Accessed 09/18/2019.

3.	 World Health Organization. Health Equity Monitor. 
Available online: https://www.who.int. Accessed November 
10, 2019.

4.	 Russell E, Kramer MR, Cooper HLF, et al. Residential 
Racial Composition, Spatial Access to Care, and Breast 
Cancer Mortality among Women in Georgia. J Urban 
Health 2011;88:1117-29.

5.	 Goungounga JA, Gaudart J, Colonna M, et al. Impact 
of socioeconomic inequalities on geographic disparities 
in cancer incidence: comparison of methods for spatial 
disease mapping. BMC Med Res Methodol 2016;16:136.

6.	 Tian Y, Li J, Zhou T, et al. Spatially varying effects of 
predictors for the survival prediction of nonmetastatic 
colorectal Cancer. BMC Cancer 2018:18:1084.

7.	 National Cancer Institute. Surveillance, Epidemiology and 
End Results Program. Available online: https://seer.cancer.
gov/. Accessed November 16, 2019.

8.	 Kleinbaum DG, Klein M. Survival Analysis A Self-
Learning Text. Springer New York Dordrecht Heidelberg 
London; 2012.

9.	 Gustafson P. Flexible Bayesian modelling for survival data. 
Lifetime Data Anal 1998;4:281-99.

0 10 20 30 40
Time (in months)

1.00

0.98

0.96

0.94

0.92

0.90

S
ur

vi
va

l f
un

ct
io

n

Figure 3 Model based estimated spatial survival curves for 
reference categories.

http://dx.doi.org/10.21037/ace-19-32
http://dx.doi.org/10.21037/ace-19-32
https://creativecommons.org/licenses/by-nc-nd/4.0/


Annals of Cancer Epidemiology, 2020Page 8 of 9

© Annals of Cancer Epidemiology. All rights reserved. Ann Cancer Epidemiol 2020;4:6 | http://dx.doi.org/10.21037/ace-19-32

10.	 Ibrahaim J, Chen M, Sinha D. Bayesian Survival Analysis. 
New York: Springer; 2000.

11.	 Banerjee S. Spatial survival models. Handbook of Spatial 
Epidemiology. New York: CRC Press; 2016.

12.	 Besag J. Spatial interaction and the statistical analysis of 
lattice systems (with discussion). J R Stat Soc Series B Stat 
Methodol 1974;36:192-236.

13.	 Besag J, York J, Mollié A. Bayesian image restoration, with 
two applications in spatial statistics. Ann Inst Stat Math 
1991;43:1-20.

14.	 Knorr-Held L, Besag J. Modelling risk from a disease in 
time and space. Stat Med 1998;17:2045-60.

15.	 Zhou H, Lawson AB, Hebert JR, et al. Joint spatial survival 
modeling for the age at diagnosis and the vital outcome of 
prostate cancer. Stat Med 2008;27:3612-28.

16.	 Lawson AB, Choi J, Zhang J. Prior choice in discrete 
latent modeling of spatially referenced cancer survival. Stat 
Methods Med Res 2014;23:183-200.

17.	 Henderson R, Shimakura S, Gorst D. Modeling Spatial 
Variation in Leukemia Survival Data. J Am Stat Assoc 
2002;97:965-72.

18.	 Zhou H, Hanson T, Jara A, et al. Modeling county level 
breast cancer survival data using a covariate-adjusted frailty 
proportional hazards model. Ann Appl Stat 2015;9:43-68.

19.	 Hanson TE, Jara A, Zhao L. A Bayesian Semiparametric 
Temporally-Stratified Proportional Hazards Model with 
Spatial Frailties. Bayesian Anal 2011;6:1-48.

20.	 Short M, Carlin BP, Bushhouse S. Using hierarchical 
spatial models for cancer control planning in Minnesota 
(United States). Cancer Causes Control 2002;13:903-16.

21.	 Berkson J, Gage RP. Survival curve for cancer patients 
following treatment. Am Statist Assoc 1959;47:501-15.

22.	 Onicescu G, Lawson AB, Zhang J, et al. Spatially-explicit 
survival modeling with discrete grouping of cancer 
predictors. Spat Spatiotemporal Epidemiol 2019;29:139-48.

23.	 Zhang Z. Parametric regression model for survival data: 
Weibull regression model as an example. Ann Transl Med 
2016;4:484.

24.	 Yu B, Tiwa RC. A Bayesian approach to mixture cure 
models with spatial frailties for population-based cancer 
relative survival data. Can J Stat 2012;40:40-54.

25.	 Banerjee S, Carlin BP. Parametric spatial cure rate models 
for interval-censored time-to-relapse data. Biometrics 
2004;60:268-75.

26.	 Hurtado Rúa SM, Dey DK. A transformation class for 
spatio-temporal survival data with a cure fraction. Stat 
Methods Med Res 2016;25:167-87.

27.	 Yakovlev AY. Threshold models of tumor recurrence. 

mathematical and computer modelling. Math Comput 
Model 1996;23:153-64.

28.	 Chen MH, Ibrahim JG, Sinha D. A new Bayesian model 
for survival data with a surviving fraction. J Am Stat Assoc 
1999;94:909-19.

29.	 Li D, Wang X, Dey DK, et al. A flexible cure rate model 
for spatially correlated survival data based on generalized 
extreme value distribution and Gaussian process priors. 
Biom J 2016;58:1178-97.

30.	 Cooner F, Banerjee S, Carlin BP, et al. Flexible cure rate 
modeling under latent activation schemes. J Am Stat Assoc 
2007;102:560-72.

31.	 Cooner F, Banerjee S, McBean MA. Modelling 
geographically referenced survival data with a cure 
fraction. Stat Methods Med Res 2006;15:307-24.

32.	 Rondeau V, Schaffner E, Corbière F, et al. Cure frailty 
models for survival data: application to recurrences for 
breast cancer and to hospital readmissions for colorectal 
cancer. Stat Methods Med Res 2013;22:243-60.

33.	 Price DL, Manatunga AK. Modelling survival data 
with a cured fraction using frailty models. Stat Med 
2001;20:1515-27.

34.	 Onicescu G, Lawson A. Bayesian cure-rate survival 
model with spatially structured censoring. Spat Stat 
2018;28:352-64.

35.	 Onicescu G, Lawson AB, Zhang J, et al. Bayesian 
Accelerated Failure Time Model for Space-Time 
Dependency in a Geographically Augmented Survival 
Model. Stat Methods Med Res 2017;26:2244-56.

36.	 Onicescu G, Lawson AB, Zhang J, et al. Spatially explicit 
survival modeling for small area cancer data. J Appl Stat 
2018;45:568-85.

37.	 Gelfand AE, Diggle PJ, Fuentes M, et al. Handbook of 
Spatial statistics. CRC Press; 2010.

38.	 Higdon D, editor. Space and Space-Time Modeling using 
Process Convolutions 2002; London: Springer London.

39.	 Zhou H, Hanson T, Zhang J. spBayesSurv: fitting Bayesian 
spatial survival models using R. J Statist Softwr 2017. doi: 
arXiv:1705.04584

40.	 Belitz C, Brezger A, Klein N, et al. BayesX Software for 
Bayesian Inference in Structured Additive Regression 
Models. Available online: http://wwwbayesxorg 2015.

41.	 Umlauf N, Adler D, Kneib T, et al. Structured Additive 
Regression Models: An R Interface to BayesX. J Stat 
Software 2015;63:1-46.

42.	 National Cancer Institute. {SEER} Research Data Record 
Description. Available online: https://seer.cancer.gov/
data-software/documentation/seerstat/nov2018/TextData.



Annals of Cancer Epidemiology, 2020 Page 9 of 9

© Annals of Cancer Epidemiology. All rights reserved. Ann Cancer Epidemiol 2020;4:6 | http://dx.doi.org/10.21037/ace-19-32

doi: 10.21037/ace-19-32
Cite this article as: Fisher G, Lawson AB. Bayesian modeling 
of georeferenced cancer survival. Ann Cancer Epidemiol 
2020;4:6.

FileDescription.pdf. Accessed November 24, 2019.
43.	 Lunn D, Jackson C, Best N, et al. The BUGS Book: A 

Practical Introduction to Bayesian Analysis. Boca Raton, 
Florida: CRC Press, Chapman & Hall; 2013.

44.	 Zhang J, Lawson A. Bayesian parametric accelerated 
failure time spatial model and its application to prostate 
cancer. J Appl Stat 2011;38:591-603.



Appendix 1 WinBUGS Code

model {
C<-100 # this just has to be large enough to ensure all phi[i]'s > 0
for(i in 1 :N)
{
lambda[i]<-exp(beta0+beta1*black[i]+beta2*married[i]+beta3*distant[i]+beta4*grade34[i]+beta5*zage_dx[i]+V1[county[i]]+W[
county[i]])
f[i]<-nu*lambda[i]*pow(time[i],nu-1)*exp(-pow(time[i],nu)*lambda[i])
S[i]<- exp(-pow(time[i],nu)*lambda[i])
#Loglikelihood function
L[i]<-death[i]*log(f[i])+(1-death[i])*log(S[i])
#poisson zero trick
zeros[i]<--0
phi[i]<- -L[i]+C
#modeldeviance[i]<- -2*L[i]
zeros[i]~dpois(phi[i])
}
nu<-exp(lognu)
beta0 ~dnorm(0.0,taubeta0)
sdbeta0~dunif(0,10)
beta1 ~dnorm(0.0,taubeta1)
sdbeta1~dunif(0,10)
beta2 ~dnorm(0.0,taubeta2)
sdbeta2~dunif(0,10)
beta3 ~dnorm(0.0,taubeta3)
sdbeta3~dunif(0,10)
beta4 ~dnorm(0.0,taubeta4)
sdbeta4~dunif(0,10)
beta5 ~dnorm(0.0,taubeta5)
sdbeta5~dunif(0,10)
taubeta0<-pow(sdbeta0,-2)
taubeta1<-pow(sdbeta1,-2)
taubeta2<-pow(sdbeta2,-2)
taubeta3<-pow(sdbeta3,-2)
taubeta4<-pow(sdbeta4,-2)
taubeta5<-pow(sdbeta5,-2)
lognu ~dnorm(0, 10)

###############################
for(i in 1:64){V1[i]~dnorm(0,tauV1)}
W[1:64]~car.normal(adj[],weights[],num[],tauW)
for(k in 1:sumNumNeigh)
{weights[k]<-1}
tauV1<-pow(sdV1,-2)
sdV1~dunif(0,10)
tauW<-1/(sdW*sdW)
sdW~dunif(0,10)

}

Supplementary


