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Introduction

The World Health Organization (WHO) has concluded 
that air pollution is a major environmental risk to health 
(https://www.who.int/news-room/fact-sheets/detail/
ambient-(outdoor)-air-quality-and-health). More than 90% 
of the world’s population lives in locations where WHO air 
quality guidelines were unmet. WHO’s International Agency 
for Research on Cancer (IARC) has classified outdoor air 

pollution and particulate matter (PM) from outdoor air 
pollution as carcinogenic to humans based on sufficient 
evidence of carcinogenicity in humans and experimental 
animals and strong mechanistic evidence (1). Epidemiology 
studies and experiments with laboratory animals provide a 
consistent picture of the carcinogenicity of air pollution. 
The epidemiology studies in particular demonstrate an 
increased risk of lung cancer in cohort and case-control 
studies which included millions of people and thousands 
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of lung cancer cases from Europe, North America, and 
Asia (1). Fine PM (PM2.5) is widely used as an indicator 
pollutant in air pollution studies, and its concentrations 
range from less than 10 to more than 100 µm/m3  
worldwide (1). In addition to particles, air pollution is 
a complex mixture of chemicals and toxicants, some of 
which are established carcinogens and are involved in 
cancer etiology due to air pollution. This review discusses 
quantifiable chemically specific biomarkers which can be 
used to assess human exposure to carcinogenic airborne 
pollutants including polycyclic aromatic hydrocarbons 
(PAH), volatile toxicants and carcinogens, oxidants, DNA 
damaging compounds, and metals. We also examine 
biomarkers that can be applied in epidemiological studies to 
distinguish exposures to air pollution versus tobacco smoke. 
While previous reviews have discussed the application of 
biomarkers to air pollution studies (2-7), ours is unique in 
focusing only on analytically validated chemically specific 
biomarkers.

PAH

PAH are a group of pollutants generated from incomplete 
combustion of organic substances and are widespread in the 
environment. Humans are exposed to PAH from different 
sources, including occupational exposures, air pollution, 
cigarette smoke, food and water, soil and dust. A large body 
of evidence implicates PAH as significant causes of cancer  
in cigarette smokers and workers with occupational 
exposure (8). They may also play a potentially important 
role in the development of lung cancer among lifelong 
never smokers (9). For the general population, air pollution, 
cigarette smoke and food are the main exposure pathways. 
Concentrations of several typical PAH including pyrene, 
benzo[a]pyrene (BaP), and phenanthrene (Phe) in cigarette 
smoke, indoor and outdoor air, and food are listed in Table S1.  
Urinary metabolites have been extensively used as 
biomarkers to assess human exposure to PAH. Metabolites 
derived from 3 PAH—pyrene, BaP, and Phe—are discussed 
here; representative structures are illustrated in Figure 1.

Pyrene metabolites

Pyrene is a relatively abundant and non-carcinogenic 
component of all PAH mixtures. Metabolism of pyrene 
leads to formation of 1-hydroxypyrene (1-OHP) which 
undergoes phase II metabolism to 1-OHP-glucuronide 
and sulfate. Jongeneelen et al. first proposed the use of 

1-OHP as a biomarker to assess exposure to PAH in coal-
tar treated patients and workers (10-12). After that, it was 
determined in hundreds of studies to assess human exposure 
to PAH. Many analytical procedures have been developed, 
including high performance liquid chromatography 
(HPLC) with fluorescence detection (HPLC-FLD) (13,14), 
gas chromatography-mass spectrometry (GC-MS) or  
GC-high resolution mass spectrometry (GC-HRMS) with 
silylation (15-17), and liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) with or without derivatization 
(18-20). Table 1 summarizes some representative data from 
recent investigations of urinary 1-OHP. 

This biomarker has several notable strengths. It is the 
principal metabolite of pyrene, which is always found 
in PAH mixtures in reasonably high proportions and 
it has a high detection frequency in human urine (30).  
While pyrene itself is non-carcinogenic, levels of 1-OHP 
are representative of carcinogenic PAH exposure. 
Levels of 1-OHP were 2.5 to 6.9 times higher in various 
occupationally exposed workers than in controls, and 
consistently about twice (1.5–2.7) as great in cigarette 
smokers as in non-smokers (26,29,33). Levels in the urine 
of the general population from the U.S. and several Asian 
countries vary considerably and are likely to be strongly 
influenced by airborne pollutants (Table 1), although diet and 
genetic polymorphisms in metabolizing enzymes due to ethnic/
racial differences may also contribute (30,31). In one 10-year  
study [2003–2014] in the U.S., children aged 6–11 years  
had higher urinary 1-OHP levels than adults aged  
21+ years (30). Possible causes for this are the unique 
activity patterns and behavior of children, as well as 
physiological differences between them and adults. 
Exposure to air pollution and secondhand smoke have been 
associated with the development of childhood asthma, lower 
respiratory infections and leukemia (34-37).

All of the studies described above have measured 
1-OHP after treatment of urine with deconjugating 
enzymes, β-glucuronidase and/or aryl-sulfatase, since 
1-hydroxypyrene glucuronide conjugate (1-OHPG) 
was the major pyrene metabolite in human urine (38). 
Methods for direct measurement of 1-OHPG have been 
established without enzymatic hydrolysis using immune-
affinity chromatography with synchronous fluorescence 
spectroscopy (IAC-SFS) (38,39), HPLC-FLD (40,41), 
and LC-MS/MS (42,43). Urinary concentrations of 
1-OHPG were about 5.6 times higher in occupationally 
exposed workers (2.16 pmol/mL, mean value) than among 
workers (0.38 pmol/mL) with no or low exposure (44). 
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Cigarette smokers had a 2–3-fold higher concentration of 
1-OHPG compared with nonsmokers (44-46). Exposure to 
secondhand smoke and air pollution would also contribute 
to the urinary 1-OHPG in children (39,47).

BaP metabolites

BaP is the prototypic carcinogenic and mutagenic PAH and 
is classified by IARC as carcinogenic to humans (8). BaP 
requires metabolic activation to exert its carcinogenic and 
other adverse effects. Phase I reactions of BaP are catalyzed 
primarily by CYP1A1 and CYP1B1 and produce a series of 
metabolites including phenols in the detoxification pathway, 
whereas epoxides, dihydrodiols, quinones and tetraols are 
produced in the bioactivation pathways, with BaP diol 
epoxide (BPDE) as a major ultimate carcinogenic metabolite 
which can attack DNA (Figure 2). These metabolites are 
mainly excreted in feces and are present in extremely 
low levels in urine. Thus, direct analysis of urinary BaP 

metabolites can be challenging. 3-hydroxyBaP (3-OHBaP) 
has been proposed as a good surrogate for assessing 
exposure to carcinogenic PAH, since its excretion, but 
not that of 1-OHP, correlated significantly with the levels 
of DNA adducts in humans. Methods for quantification 
of 3-OHBaP have been developed based on HPLC-
FLD (14,48), GC-MS or GC-HRMS with or without 
silylation (15,49,50), and LC-MS/MS with or without 
derivatization (20,51,52). Urinary levels of 3-OHBaP in 
some recent studies are summarized in Table S2. In general, 
urinary 3-OHBaP concentrations were 2 to 4 orders of 
magnitude lower than those of 1-OHP, not only because 
urinary metabolites account for a very low proportion of 
total BaP, but also due to the more complex metabolism of 
BaP. A biological limit value (0.45 nmol/mol creatinine), 
higher than most of the reported levels, was proposed by 
Lafontaine et al. based on the correlation between urinary 
3-OHBaP and atmospheric BaP (53).

3-OHBaP represents a detoxification pathway of 

Figure 1 Structures of main PAH metabolites discussed in this review. PAH, polycyclic aromatic hydrocarbon.
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Table 1 Representative urinary 1-OHP concentrations in various subjects in recent studies

Country Subject categories 1-OHP level Reference

China Coke oven workers (N=122) 35,120 [19,870, 61,930] pg/mg creatinine [median (25th, 
75th percentile)]

(21)

South Korea Office workers (N=137) 85.6 (2.09) pg/mg creatinine [GM (SD)] (22)

Painting workers (N=82) 587.9 (3.45) pg/mg creatinine

Nigeria Charcoal workers (N=25) 4,280±2,450 [675–9,320] pg/mg creatinine [mean (range)] (23)

Charcoal workers (N=23) 2,550±1,250 [656–6,230] pg/mg creatinine 

Non-charcoal workers (N=20) 617±502 [19.3–792,000] pg/mg creatinine 

Ghana E-waste recycling workers (N=72) 1,330 [780–2,520] pg/mg creatinine [median (25th, 75th 
percentile)]

(24)

Controls (N=40) 540 [290–800] pg/mg creatinine 

Canada Firefighters pre-fire (N=27) 100 [10] pg/mg creatinine [GM (SE)] (25)

Firefighters post-fire (N=31) 270 [20] pg/mg creatinine 

Controls (N=13) 70 [10] pg/mg creatinine 

U.S. E-cigarette users (N=28) 82.9 (56.7–120) pg/mL [GM (95% CI)] (26)

U.S. Cigarette smokers (N=17) 192 [120–308] pg/mL [GM (95% CI)] (27)

U.S. Cigarette smokers (N=165) 212 [175–255] pg/mL [GM (95% CI)] (28)

Iran Never tobacco users (N=58) 412.0 (344.2–493.1) pg/mg creatinine [GM (95% CI)] (29)

Exclusive cigarette smokers (N=33) 636.0 (504.0–802.4) pg/mg creatinine

Exclusive waterpipe smokers (N=37) 960.8 (725.1–1273.0) pg/mg creatinine

Exclusive nass smokers (N=30) 441.9 (340.2–574.0) pg/mg creatinine

U.S. Cigarette smokers (N=885) 259 [240–280] pg/mg creatinine [GM (95% CI)] (30)

Nonsmokers (N=1,296) 96.7 (90.8–103) pg/mg creatinine 

U.S. Mexican Americans (N=450) 125 [117–133] pg/mL [GM (95% CI)] (30)

Non-Hispanic blacks (N=578) 182 [168–198] pg/mL 

Non-Hispanic whites (N=979) 128 [118–138] pg/mL 

All Hispanics (N=698) 129 [120–139] pg/mL

Asians (N=352) 93.2 (83.6–104) pg/mL

China General population (N=84) 667 [378] pg/mL [mean (median)] (31)

Vietnam General population (N=23) 641 [463] pg/mL [mean (median)]

Japan General population (N=34) 183 [75] pg/mL [mean (median)]

India General population (N=38) 699 [424] pg/mL [mean (median)]

Malaysia General population (N=29) 186 [65] pg/mL [mean (median)]

Korea General population (N=60) 167 [103] pg/mL [mean (median)]

Kuwait General population (N=38) 320 [220] pg/mL [mean (median)]

China Children aged 7–13 years (N=1,206) 184 [212–237] pg/mL [GM (95% CI)] (32)

Table 1 (continued)
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BaP metabolism. Conversely, urinary r-7,t-8,9,c-10-
tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (trans, 
anti-BaPT), the major end product of the BaP bay region 
diol epoxide metabolic activation pathway, was proposed 
to be a more relevant biomarker linked to bioactivation 
and carcinogenicity (54-56). Methods for quantification 

of trans, anti-BaPT based on GC-negative ion chemical 
ionization (NICI)-MS/MS or GC-atmospheric pressure 
laser ionization (APLI)-MS have been described (54-60).  
For occupational exposure, mean trans, anti-BaPT was 
0.4±0.3 nmol/mol creatinine in coke-oven workers,  
~10 times higher than that (0.03±0.03 nmol/mol creatinine) 

Table 1 (continued)

Country Subject categories 1-OHP level Reference

U.S. Children aged 6–11 years (N=415) [2009–2010] 147 [125–174] pg/mL [GM (95% CI)] (30)

Children aged 6–11 years (N=397) [2011–2012] 130 [111–153] pg/mL 

Children aged 6–11 years (N=399) [2013–2014] 131 [118–145] pg/mL 

Adults aged 20+ years (N=1,911) [2009–2010] 113 [103–122] pg/mL

Adults aged 20+ years (N=1,703) [2011–2012] 107 (96.2–119) pg/mL 

Adults aged 20+ years (N=1,802) [2013–2014] 128 [120–137] pg/mL

1-OHP, 1-hydroxypyrene; GM, geometric mean; SD, standard deviation; CI, confidence interval.

Figure 2 Metabolism of BaP and Phe to dihydrodiols, phenols, quinones and tetraols. P450, cytochrome P450; EH, epoxide hydrolase; 
AKR, aldo-keto reductases; BaP, benzo[a]pyrene; Phe, phenanthrene.
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in referents (P<0.001) (61). An extremely high level of trans, 
anti-BaPT (17.2±13.5 fmol/mL) was observed in creosote 
workers, ~29 and 66 times higher than that in smokers  
(0.587±0.311 fmol/mL) and nonsmokers (0.26±0.04 fmol/mL)  
without occupational exposure to PAH (55,62). The 
relationship of trans, anti-BaPT to exposure to air pollution 
has not been reported. 

Phe metabolites

Phe is the simplest non-carcinogenic PAH with structural 
features (bay region) and enzymology profile similar to 
that of BaP (Figure 2). Thus, Phe metabolites may provide 
information on both exposure and metabolic activation. 

As the main metabolites in the detoxification pathway, 
five phenanthrols—1-OHPhe, 2-OHPhe, 3-OHPhe, 
4-OHPhe and 9-OHPhe—have been identified in human 
urine by using GC-MS (63,64), HPLC-FLD (65), LC-MS/
MS (66). Table S3 summarizes some representative data 
from recent investigations of urinary phenanthrols. Similar 
to 1-OHP, levels of phenanthrols in the urine of the general 
population from the U.S. and several Asian countries also 
vary considerably, ~10 times lower in the U.S. population 
than those from China, which is likely due to air pollution 
(30,31). Kuang et al. reported that levels of 1-, 2-, and 
3-OHPhe were ~3–4 times higher in high exposure coke-
oven workers than controls, while 9-OHPhe concentration 
was only ~1.6 times higher, and 4-OHPhe levels were 
almost the same and even lower in exposure group than the 
controls (64). Levels of 1-, 2-, 3- and 4-OHPhe in smokers 
were 1.7–2.9 times higher than in nonsmokers in the U.S. 
CDC’s National Health and Nutrition Examination Survey 
(NHANES) 2011–2012 with large sample size (33). And the 
ratio of 3- plus 4-OHPhe to 1- plus 2-OHPhe [(3-OHPhe + 
4-OHPhe)/(1-OHPhe + 2-OHPhe)] increased from 0.39 to 
0.57 with cigarette consumption (33), confirming the results 
obtained by Heudorf & Angerer and Jacob et al. (67,68). 
This phenomenon is thought to be caused by the induction 
by cigarette smoke of P450 1A2, which plays an important 
role in 3,4-oxidation of Phe (69,70). 

Phe dihydrodiols including Phe-1,2-diol, Phe-3,4-diol  
and Phe-9,10-diol were also introduced to assess the 
metabolic pathways of Phe. They have been quantified in 
human urine by GC-MS (71,72). 

While trans, anti-BaPT is relevant to bioactivation and 
carcinogenicity, its concentration in human urine is so low 
that it cannot be used in large studies. Thus, r-1, t-2,3,  

c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene 
(trans, anti-PheT) was proposed as a surrogate measure 
of carcinogenic PAH metabolic activation by the bay-
region diol epoxide pathway (62,73). Urinary trans, anti-
PheT levels have associated with lung cancer risk in 
smokers and nonsmokers in cohort studies, and a strong 
correlation between overall trans, anti-PheT and trans, anti-
BaPT was observed in human urine (9,62,74). A simple 
high throughput method using one step 96-well format 
SPE extraction coupled with GC-NICI-MS/MS was 
developed for the analysis of trans, anti-PheT, allowing its 
measurement in large studies. 

Phe quinones (PheQ) are components in airborne PM 
and generate reactive oxygen species in a redox cycling 
process. PheQ can also form during P450s and aldo-keto 
reductases catalyzed metabolism of Phe. 9,10-PheQ and 
its glucuronide conjugate have been identified in human 
urine at a quite low level (39.7–128.2 nmol/mol creatinine),  
85–275 times lower than total OHPhe, accounting for a small 
proportion (~1% or less) of Phe metabolites (63,64,75).

Individual susceptibility plays an important role in cancer 
development in humans exposed to chemical carcinogens, 
thus identification of high-risk individuals is critical in 
cancer prevention and therapy. Up to now, Phe is the only 
PAH which has a bay region and for which most kinds of 
metabolites can be conveniently analyzed. This provides an 
opportunity to closely mimic metabolic phenotyping of BaP 
resulting from bioactivation and detoxification pathways. 
A ratio of bioactivation metabolites to detoxification 
metabolites has been proposed to assess human individual 
sensitivity to carcinogenic PAH exposure. Trans, anti-PheT/
HOPhe ratios were significantly higher in smokers than in 
nonsmokers in a longitudinal study, showing that smoking 
induces the diol epoxide metabolic activation pathway of 
Phe (76). 

Volatile toxicants and carcinogens

Benzene

Benzene is an established cause of acute myeloid leukemia 
and acute non-lymphocytic leukemia in humans (77). 
Cigarette smoking is a major source of human exposure 
to benzene. There are a number of occupational sources of 
exposure to benzene including in the petrochemical industry, 
coke oven industry, around gasoline service stations, in urban 
work settings, and in certain manufacturing industries. 
Sources of benzene exposure in the general population 
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include areas with heavy traffic, near gasoline filling stations, 
and consumption of contaminated food and water (77). 

While benzene itself in blood or urine and trans, trans-
muconic acid in urine have been used as biomarkers of 
benzene exposure, they each have disadvantages. Benzene 
is volatile, so could be lost from blood or urine during 
collection, and blood collection is invasive. Trans, trans-
muconic acid is a metabolite of both benzene and sorbic 
acid, thus detracting from its specificity as a benzene 
biomarker.  The benzene metabol i tes  phenol  and 
catechol also have multiple dietary sources, so cannot be 
directly linked to benzene exposure (78,79). The most 
generally useful biomarker of benzene exposure is urinary 
S-phenylmercapturic acid (SPMA, Figure 3), which is 
formed by conjugation of the benzene metabolite benzene 
oxide with glutathione (78,79). The resulting intermediate 
spontaneously dehydrates to S-phenyl glutathione (SPG) 
and is processed metabolically by the mercapturic acid 
pathway (γ-glutamyl transpeptidase and cysteinyl glycinase 
followed by acetylation) to give SPMA. Some undehydrated 
product (e.g.,  1-hydroxy-2-N-acetylcysteinyl-1,2-
dihydrobenzene) can also be formed from the intermediate 
during this process; treatment of the urine sample with acid 
converts this metabolite to SPMA. SPMA is determined by 
LC-MS/MS (80,81).

The highest levels of urinary SPMA are observed in 
cigarette smokers. In one study, levels of SPMA in cigarette 
smokers from 5 different ethnic groups ranged from 
3.05 to 4.56 pmol/mg creatinine (about 1.4 µg per 24 h) 
while another study found levels of 4.72–7.05 µg per 24 h 
(81,82). Cessation of smoking resulted in an approximate 
90% reduction of SPMA within 3 days to a level of about 
0.4 pmol/mg creatinine, consistent with the major effect 
of cigarette smoking on SPMA levels (82,83). A study 
carried out in Qidong, China, a region with substantial 
air pollution, found higher levels of SPMA in urine of 

non-smokers (0.98 pmol/mg creatinine) than reported in 
non-smoking residents of Singapore (about 0.5 pmol/mg 
creatinine) (84-86). Similarly, urine samples collected from 
non-smokers in Shanghai, China from 1986 to 1989 when 
general environmental pollution was likely considerable, had 
about 1 pmol/mg creatinine SPMA (9). Some studies show 
elevated SPMA levels in occupationally exposed subjects 
such as taxi drivers, but the effects are less than those due to 
smoking or high air pollution (87-90). Genotype can have a 
substantial effect on SPMA levels in urine (91). In one study, 
GSTT1 deletion explained up to 31.6% of the variation 
in SPMA levels; thus, determination of GST genotype is 
critical in studies using SPMA as a biomarker (81). GSTT1 
null genotype theoretically signifies a higher risk for health 
effects upon benzene exposure since its detoxification will 
be decreased, yet the null genotype results in lower SPMA 
levels, which presents some difficulties in interpretation. 

1,3-butadiene

1,3-butadiene is considered carcinogenic to humans by 
IARC; it causes cancer of the hematolymphatic organs 
(77,92). Cigarette smoking is the major source of exposure 
to 1,3-butadiene. Levels of 1,3-butadiene in outdoor air 
are typically relatively low, with a mean of about 0.1 µg/m3,  
although the levels can be somewhat higher in areas of 
urban industry and high road traffic (77).

The most useful and widely applied biomarkers of 
1,3-butadiene exposure are the urinary metabolites 
1-(N-acetyl-L-cysteine-S-yl)-2-hydroxybut-3-ene and 
2-(N-acetyl-L-cysteine-S-yl)-1-hydroxybut-3-ene, 
collectively termed MHBMA, resulting from glutathione 
detoxification of 3,4-epoxy-1-butene, as illustrated in Figure 
4. In one study of more than 1,000 smokers, MHBMA 
levels determined by LC-MS/MS averaged 4.8 ng/mL 
urine while another study reported a range of 3.75–5.69 

Figure 3 Metabolic formation of SPMA from benzene. Benzene is converted to benzene oxide, catalyzed mainly by cytochrome P450 2E1. 
Benzene oxide is detoxified by reaction with glutathione (GSH), catalyzed by glutathione transferases (GSTs). Dehydration of the resulting 
intermediate yields phenyl glutathione, which is metabolized by the mercapturic acid pathway to the urinary metabolite and biomarker 
SPMA. Some of the undehydrated intermediate from the initial reaction with glutathione may also be processed by the mercapturic acid 
pathway giving 1-hydroxy-2-N-acetylcysteinyl-1,2-dihydrobenzene; acid treatment of the urine sample converts this to SPMA. SPMA, 
S-phenylmercapturic acid.
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µg/24 h (82,93). Cessation of smoking resulted in a 77–90% 
reduction in MHBMA levels (82,83). As is the case with 
benzene-derived mercapturic acids, GSTT1 status has a 
strong effect on urinary MHBMA levels (14). Mercapturic 
acids of additional 1,3-butadiene epoxide metabolites have 
been analyzed by LC-MS/MS to demonstrate exposure 
to this carcinogen in industrial settings (94). LC-MS/MS 
analysis of MHBMA in non-smoking non-occupationally 
exposed subjects from the general population resulted in 
mainly values below the detection limit of the method. 
Hemoglobin adducts and DNA adducts of 1,3-butadiene 
have also been developed as biomarkers although not yet 
extensively used in human biomonitoring (95,96). 

Acrolein and crotonaldehyde (Cro)

Acrolein and Cro are strong eye and respiratory tract 
toxicants causing irritation, inflammation, cell proliferation, 
and multiple other effects (97-99). Both compounds react 
directly with DNA forming adducts that may be involved 
in carcinogenesis although neither is a strong carcinogen 
(100-102). Acrolein and Cro are also formed endogenously 
during lipid peroxidation and related processes (97-99). 

The mercapturic acid metabolites 3-hydroxypropyl 
mercapturic acid (3-HPMA) and 3-hydroxy-1-methylpropyl 
mercapturic acid (HMPMA) (Figure 5), determined by LC-
MS/MS, are well-established biomarkers of acrolein and 
Cro exposure (103). Cigarette smoking is the major source 
of exposure to acrolein and Cro. In one study of more than 
2,200 cigarette smokers, median levels of 3-HPMA and 
HMPMA ranged from about 2,000 to 3,600 pmol/mL urine 

while another reported about 2,000–6,000 µg/24 h (82,104). 
When cigarette smokers stopped smoking, levels decreased 
by 70–85% (82,83). In the NHANES study, cigarette 
smokers and non-users had 1.089 mg/g creatinine and 
0.219 mg/g creatinine levels of 3-HPMA, respectively, and 
1.61 and 0.313 mg/g creatinine of HMPMA, respectively 
(105,106). No significant relationship was found between 
location (urban vs. rural) and levels of 3-HPMA and 
HMPMA in pregnant women in the National Children’s 
Health Study (107).

Ethylene oxide and propylene oxide

Ethylene oxide is considered carcinogenic to humans by 
IARC based on sufficient evidence for carcinogenicity 
in laboratory animals and extensive mechanistic data 
including the induction of sister chromatid exchanges, 
chromosomal aberrations and micronucleus formation 
in the lymphocytes of exposed workers (92). Cigarette 
smoking is an important source of ethylene oxide exposure; 
levels of the hydroxyethyl valine adduct of ethylene oxide 
in hemoglobin, one of the most widely used biomarkers 
of ethylene oxide exposure, are increased upon exposure 
to cigarette smoke, and correlated with the number of 
cigarettes smoked (92). Urinary 2-hydroxyethyl mercapturic 
acid (HEMA), formed by glutathione conjugation of 
ethylene oxide followed by normal metabolic processing, is 
another established biomarker of ethylene oxide exposure. 
Exposure of hospital workers to ethylene oxide used in 
sterilization processes resulted in elevated levels of these 
biomarkers. Pregnant women who were cigarette smokers 

Figure 4 Metabolic formation of MHBMA from 1,3-butadiene. MHBMA, 1-(N-acetyl-L-cysteine-S-yl)-2-hydroxybut-3-ene and 
2-(N-acetyl-L-cysteine-S-yl)-1-hydroxybut-3-ene.

Figure 5 Formation of 3-HPMA and HMPMA from acrolein (R = H) and crotonaldehyde (R = CH3). 3-HPMA, 3-hydroxypropyl 
mercapturic acid; HMPMA, 3-hydroxy-1-methylpropyl mercapturic acid.
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had significantly elevated levels of HEMA in the National 
Children’s Study (107). When smokers stopped smoking, 
their levels of HEMA decreased by 75% within 3 days (83). 
N7-(2-Hydroxyethyl)guanine, formed in DNA upon reaction 
with ethylene oxide, is an additional potential biomarker of 
ethylene oxide exposure, but is also formed endogenously as 
are the other biomarkers discussed here (92).

Propylene oxide is considered “possibly carcinogenic to 
humans” by IARC (108). Urinary 2-HPMA is a biomarker 
of propylene oxide exposure (109). Similar to the other 
volatiles discussed here, cigarette smoking results in 
significant elevations of this biomarker, which decrease 
upon cessation (109). Air pollution has not been established 
as a source of elevated 2-HPMA in urine (107). 

Other compounds and PM2.5

There is some human exposure to polychlorinated 
biphenyls (PCBs) even though their production has been 
banned for decades and their concentrations in the air 
are quite low. Hydroxylated PCBs in human urine or 
plasma are commonly used biomarkers (110-112). Oxy- 
and nitro-PAHs can be formed directly or indirectly by 
oxidation or nitration of PAH. Among them, 1-nitropyrene, 
6-nitrochrysene, 3-nitrobenzanthrone, and anthraquinone 
have received considerable attention (113,114). Metabolites 
of 1-nitropyrene have been used to examine personal 
exposures (115,116). 

PM2.5 refers to PM with an aerodynamic diameter <2.5 µm, 
which can penetrate deeply into the human lung and even 
the bloodstream. PM2.5 is monitored in the atmosphere as 
a critical indicator of air pollutant dose, but doesn’t have a 
specific exposure biomarker. Rather, biomarkers of human 
exposure to PM2.5 are mainly based on its bound chemicals, 
the concentrations of which may have strong positive 
correlations with PM2.5.

Oxidative damage products

Exposure to airborne pollutants from inhaling polluted 
urban air, cigarette smoke, and industrial and occupational 
toxicants is an established cause for cancer and a range of 
respiratory and cardiovascular diseases, among other health 
outcomes (117-119). Oxidative stress and inflammation 
are key mechanisms underlying such diseases. There are 
several possible pathways by which particles and chemicals 
in polluted air and cigarette smoke can trigger these 
processes: the inhaled PM can cause inflammation in the 

lung, resulting in the release of various reactive oxygen 
species by macrophages; inflammatory processes can also be 
induced by the chemical toxicants and carcinogens present 
in the polluted air or deposited on the solid particles of PM; 
or oxidative stress can be induced via Fenton chemistry by 
transition metals present in PM (120,121). These and other 
mechanisms are likely to act together to produce persistent 
oxidative stress, leading to the formation of reactive species 
capable of oxidizing key macromolecules such as DNA and 
lipids, and inducing cellular damage (122-125). Products 
of these interactions can be measured in various biological 
samples and serve as biomarkers of oxidative stress in 
populations exposed to air pollution, cigarette smoke, and 
other inhaled toxic and carcinogenic agents (126-130). 
Urine is a widely used biological matrix for the analyses of 
many such biomarkers, including DNA adducts (131-137).

Urinary 8-hydroxy-2'-deoxyguanosine (8-OH-dG)

8-hydroxy-2'-deoxyguanosine (8-OH-dG) is one of the 
most widely studied urinary DNA-derived biomarkers of 
oxidative stress. There are several potential mechanisms 
leading to the excretion of 8-OH-dG in urine, including the 
removal of the major oxidation adduct 8-oxo-dG from DNA 
by base excision repair, removal from the nucleotide pool by 
nucleotide phosphatases, and release from DNA after cell 
death (138-142). Some studies show that urinary 8-OH-dG 
correlates with oxidative stress and inflammation, and with 
the risk of cancer and cardiovascular diseases (135,143-147). 
A positive correlation between urinary 8-OH-dG and the 
levels of this biomarker in plasma and saliva has been also 
reported, supporting its relevance to the overall systemic 
oxidative status (148,149). 

Enzyme-linked immunosorbent assay (ELISA) is one of the 
most frequently used methods for the analysis of 8-OH-dG  
in urine and other biological fluids; however, it suffers from 
a lack of sensitivity and selectivity when compared to mass-
spectrometry based assays. Comparison of data obtained by 
the two methodologies shows much higher levels measured by 
ELISA than by LC-MS/MS, and a lack of correlation between 
the results of the two assays, calling into question the accuracy 
of published data generated by using ELISA (150). 

Numerous MS-based assays have been reported for the 
analysis of 8-OH-dG in urine, including high-throughput 
techniques (151-154). Studies employing such assays 
generally show positive associations between exposure to 
air pollution and urinary 8-OH-dG. For instance, a study 
examining associations between indoor air quality and health 
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in participants with chronic obstructive pulmonary disease 
(COPD) in Boston, USA, found a positive association 
between traffic-related black carbon exposure and urinary 
8-OH-dG (155). The relationship between traffic-related 
air pollution and urinary 8-OH-dG and other biomarkers of 
oxidative stress has been also observed in studies outside the 
U.S. A study of traffic conductors in Taiwan showed that 
their urinary 8-OH-dG levels and the frequency of DNA 
strand breaks were significantly higher than in indoor office 
workers studied as controls (156). The same study showed a 
significant association of 8-OH-dG with urinary 1-OHPG,  
which in turn was associated with the levels of PAH in 
airborne particulates. Other studies assessed changes in 
urinary 8-OH-dG in response to changes in exposure. In 
one study in a limited number of subjects traveling from 
Germany to China, higher levels of urinary 8-OH-dG were 
observed in these individuals after their trip to China than 
before the trip, consistent with the higher air pollution 
levels in China (157). A study conducted in Italy showed 
that levels of this biomarker in children increased in the 
evening compared to morning levels, most likely due to day-
long exposures to industrial and urban air pollution (158).  
Increased levels of urinary 8-OH-dG have been reported 
in smokers, and a correlation between urinary total 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a 
tobacco-specific biomarker, and 8-OH-dG was reported in 
individuals exposed to secondhand smoke (159-162). Studies 
that employed HPLC with electrochemical detection are 
also generally consistent with those based on LC-MS/MS 
measurements of 8-OH-dG. Such studies generally show 
increased levels of urinary 8-OH-dG associated with urban 
air pollution (163-165), exposures to smoke and fumes from 
cooking (166,167), and occupational toxic exposures (168). 

Urinary malondialdehyde

Malondialdehyde is a major product of lipid peroxidation (169).  
It undergoes oxidative metabolism, and being highly 
reactive, can lead to DNA and protein adduct formation 
and is mutagenic (170-172). However, substantial levels of 
malondialdehyde are still present in the general circulation 
and excreted in urine, and it has been widely used as 
a biomarker of oxidative stress caused by air pollution, 
smoking, and occupational exposures, and has been associated 
with risk of cancer and atherosclerosis (147,173-175). 

While an ELISA method is commonly used for 
malondialdehyde analysis, many studies employed HPLC-
FLD for its analysis in biological samples, including urine, 

taking advantage of its reaction with thiobarbituric acid 
which produces an intensely colored chromogen fluorescent 
red adduct (176,177). Similar to urinary 8-OH-dG,  
such studies generally find positive associations between 
air pollution and urinary malondialdehyde levels. Thus, 
the Boston study of COPD patients showed a positive 
association between black carbon exposure and urinary 
malondialdehyde (155). A study of the impact of Beijing 
Olympic air pollution control measures showed significant 
decreases in urinary malondialdehyde during the Olympics, 
compared to the pre-Olympic period, and subsequent 
increases in the post-Olympic period, consistent with the 
trends in air pollution levels (178). In children, urinary 
malondialdehyde was associated with seasonal and 
regional variations in air pollution, as well as exposures to 
secondhand smoke (47,179). Associations with occupational 
exposures to metals also have been reported (180). 
However, the thiobarbituric acid-based assay is nonspecific, 
and MS-based assays are preferred for a more accurate and 
precise measurement of this biomarker (181). Studies that 
employed LC- or GC-MS/MS for the analysis of urinary 
malondialdehyde are less consistent in reporting on the 
association between its levels and air pollution. For example, 
the study of individuals traveling from Germany to China 
showed an increase in the levels of urinary malondialdehyde 
after the trip, similar to the results for 8-OH-dG (157). 
However, a randomized crossover intervention study of 
portable air filter use by Canadian healthy adults showed 
substantial reductions in indoor fine particle concentrations 
(60% reduction after 7 days of filter use), but no changes in 
urinary malondialdehyde levels (182). 

Urinary 8-epi-PGF2α

F2-isoprostanes are prostaglandin (PG)-like compounds 
generated through oxidative stress-induced peroxidation of 
arachidonic acid (183,184). These compounds are mostly 
stable and robust indicators of oxidative stress present in all 
human tissues and fluids, and their levels have been related to a 
variety of chronic conditions including cardiovascular disease, 
diabetes, obesity, and neurodegenerative diseases (184). Among 
existing F2-isoprostanes, urinary 8-iso-PGF2α is a commonly 
used and accepted biomarker of oxidative damage (183,184). 

Published studies reporting on the levels of F2-
isoprostanes in various biological fluids, including urine, 
used analytical techniques such as ELISA, GC, and GC- 
or LC-MS/MS (185,186). Most environmental exposure 
studies used ELISA and found positive associations between 
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air pollution and isoprostane levels in urine (187-190). 
Environmental exposure studies that employed LC-MS/MS 
for the analysis of urinary 8-iso-PGF2α are limited. The study 
that assessed oxidative stress markers in travelers returning 
to Germany after the trip to China showed that the LC-MS/
MS-measured urinary 8-iso-PGF2α was higher after, than 
before, the trip to China, consistent with the observations 
for urinary 8-OH-dG and malondialdehyde (157).  
However, a study in Peru that investigated the effect of 
interventions to prevent exposures from wood-burning 
stoves showed no difference in urinary 8-iso-PGF2α between 
the intervention and the control groups (166). Furthermore, 
a trend was observed towards negative association between 
this biomarker and personal PM2.5 exposure (r=−0.21, P=0.09) 
after controlling for the effect of proximity to the road.

Many studies consistently report the association of 8-iso-
PGF2α with smoking. The levels of this biomarker were 
reported to be higher in smokers than in nonsmokers 
(191-195), associated with smoking intensity (196), and 
declining after smoking cessation (196,197). A recent study 
investigated the longitudinal stability of 8-iso-PGF2α over a 
period of 20 weeks in a large multi-site clinical trial (198).  
The intra-class correlation coefficient for urinary 8-iso-PGF2α 
was 0.51 (95% CI, 0.45–0.57), indicating fair longitudinal 
stability of this biomarker in cigarette smokers. This is an 
important result because another recent study reported a 
significant association between prospectively measured 8-iso-
PGF2α and lung cancer incidence in cigarette smokers (199).

DNA adducts

Many chemical toxicants and carcinogens present in 
polluted air and cigarette smoke are capable of forming 
DNA adducts, either directly (e.g., aldehydes) or following 
metabolic activation to reactive electrophiles (e.g., PAH). 
Furthermore, oxidative stress and inflammation also 
result in the formation of a wide range of DNA adducts. 
Such DNA modifications, if not repaired efficiently, can 
lead to miscoding and mutations in oncogenes and/or 
tumor suppressor genes, and therefore play a key role in 
carcinogenic outcomes associated with exposures to air 
pollution and cigarette smoke (200). Therefore, analysis of 
DNA adducts in exposed individuals offers a more relevant 
measure of harm and subsequent health risk caused by 
chemical constituents present in polluted air and cigarette 
smoke, as well as oxidative damage and inflammation 
triggered by such exposures. 

Studies of DNA adduct formation in response to 

environmental exposures widely employed the 32P-postlabeling 
approach to measure “bulky” DNA adducts formed by a 
range of chemical carcinogens, particularly PAH (201,202). 
Such studies generally report increases in the levels of 
bulky adducts in response to air pollution and smoking  
(201,203-206). However, 32P-postlabeling lacks specificity, 
which undermines the identity and the accuracy of 
quantitation of the adducts measured by this technique. 
More selective and sensitive MS-based assays have been 
developed for the analysis of individual DNA adducts, and 
studies employing such assays will be discussed here.

DNA adducts derived from specific chemicals

PAH
The most studied PAH-derived adduct is BPDE-N2-dG, 
which is formed by BaP (207-210). One approach to measure 
this adduct is to analyze trans, anti-BaPT released upon 
DNA hydrolysis (207). As an example, this method was used 
to show an association of BaP-DNA adduct levels in cord 
blood and in utero exposure to secondhand tobacco smoke 
with decreased fetal growth and reductions in cognitive 
development among children in the World Trade Center 
Cohort (211,212). However, the specificity of this method 
has been questioned, given that the frequency of BPDE-
N2-dG detection in human samples by the more selective 
and sensitive MS-based assays is very low (213-216).  
Recently, an ultrasensitive LC-nanoelectrospray ionization 
(NSI)-high-resolution tandem mass spectrometry (HRMS/
MS) method was developed for the analysis of BPDE-
N2-dG and applied to the analysis of human lung samples 
obtained during surgery for lung cancer (217). In that 
study, smokers had approximately 3 times higher levels 
of BPDE-N2-dG in their lungs than nonsmokers, and the 
measured levels of the adduct were ~1,000-fold lower than 
those measured in previous studies by the immunochemical 
technique (208). Another potential approach to the analysis 
of DNA damage caused by exposure to PAH is the analysis 
of depurinated adducted DNA bases in urine. For instance, 
a study of such urinary biomarkers analyzed by LC-MS/MS 
showed that levels of BaP-DNA bases were much higher in 
the urine of women exposed to coal smoke than in smokers’ 
urine, and that the two exposures produced very different 
urinary biomarker profiles (218). 

Aldehydes
Human exposure to airborne aldehydes can occur through 
exposures to automobile exhaust, heated cooking oil, 
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cigarette smoke, and certain occupational exposures (219). 
While the presence of DNA adducts induced by acrolein, 
formaldehyde, acetaldehyde, and Cro in humans has been 
reported in several studies, application of such biomarkers 
in environmental exposure studies is relatively limited. 
Reaction of acrolein with DNA leads to the formation 
of 1,N2-propanodeoxyguanosine adducts α-OH-Acr-dG 
and γ-OH-Acr-dG, of which α-OH-Acr-dG has higher 
mutagenicity but γ-OH-Acr-dG is the predominant isomer 
detected in human DNA from leukocytes, liver, and lung 
(220,221). Studies that employed mass spectrometry-based 
techniques showed no significant difference in the levels of 
these adducts between smokers and nonsmokers (220,222). The 
most abundant product of the reaction of formaldehyde with 
DNA is N6-hydroxymethyldeoxyadenosine (HOMe-dA). Our 
group was the first to demonstrate the presence of this adduct in 
human leukocyte DNA, showing much higher levels in smokers  
(mean ± SD, 179±205 fmol/µmol dAdo) compared to 
nonsmokers (15.5±33.8 fmol/µmol dAdo; P<0.001) (27).  
Results from another study showed a similar trend 
toward higher levels of adducts in smokers, however, the 
difference was not statistically significant (222). The major 
acetaldehyde DNA adduct is N2-ethylidenedeoxyguanosine 
(N2-ethyl idene-dG).  In addit ion,  s imilar  to Cro, 
acetaldehyde can form Cro-dG adducts. Both types of 
adducts can be measured in human tissues and leukocyte 
DNA by LC-MS/MS-based methods (223,224). Levels 
of N2-ethylidene-dG have been shown to decrease after 
smoking cessation (225); however, the difference in the 
levels in oral cells from smokers and nonsmokers did not 
reach statistical significance (222). On the other hand, 
analysis of Cro-dG in human saliva by LC-MS/MS in 
the same study showed clear differences between smokers 
and nonsmokers (222). Both adduct measurements have 
been used in air pollution studies. A study of the effect of 
Chinese-style wok cooking in nonsmoking Chinese women 
showed no difference in N2-ethylidene-dG between women 
who engaged in regular home cooking and controls, despite 
elevated exposures to a range of volatile toxicants (85).  
In another study, higher levels of urinary Cro-dG were 
observed in subjects exposed to urban air pollution 
compared to controls (P<0.05) (226).

Other organic compounds
Examples of other DNA damaging toxicants that are 
present in polluted air or cigarette smoke include aromatic 
amines, 1,3-butadiene, and acrylamide. The aromatic amine 
4-aminobiphenyl (4-ABP) is a known bladder carcinogen 

in both animals and humans and forms the DNA adducts 
4-ABP-C8-dG (major), 4-ABP-C8-dA, and 4-ABP-N2-dG  
(227,228). In contrast to the reported data generated by 
32P-postlabeling methods, the frequency of detection 
of these adducts by LC-MS/MS in human tissues is 
relatively low (215,228-230). The most abundant adduct 
of 1,3-butadiene is 7-(2,3,4-trihydroxybut-1-yl)guanine  
(7-THBG). Levels of this adduct are not different between 
smokers and nonsmokers and do not change in smokers 
after smoking cessation; however, occupational exposure 
to 1,3-butadiene leads to higher levels of 7-THBG (231). 
A major DNA adduct derived from acrylamide exposure is 
7-(2-carbamoyl-2-hydroxyethyl)guanine. Similar to 7-THBG 
findings, measurement of this adduct in human urine did not 
produce a statistically significant difference between smokers 
and nonsmokers, but increased levels were measured in 
workers occupationally exposed to acrylamide (232,233).

DNA adducts derived from oxidative damage

A comprehensive review of oxidative stress-induced DNA 
damage was published recently (234). The most widely 
studied DNA adduct is 8-oxo-dG, which can be formed 
via direct oxidation of DNA by oxidizing agents present in 
polluted air and cigarette smoke. This highly mutagenic 
adduct was detected in leukocytes and various human 
tissues. Studies employing HPLC with electrochemical 
detection report positive associations between air pollution 
and 8-oxo-dG. For instance, a study of students living and 
studying in Copenhagen showed that personal exposure 
to PM2.5 was predictive of 8-oxo-dG levels in lymphocyte 
DNA, with an 11% increase in 8-oxodG per 10 g/m3 
increase in PM2.5 exposure (163). In another study, the levels 
of this adduct were significantly higher in asbestos-exposed 
workers compared to the non-exposed control group (235).  
A subsequent study in the same population reported 
no association between 8-oxo-dG and a wide range of 
potential confounding factors, further supporting the role 
of asbestos exposure in elevated oxidative DNA damage in 
exposed workers (236). However, studies employing mass 
spectrometry-based methods for the investigation of the 
impact of air pollution or smoking on 8-oxo-dG in DNA (as 
opposed to urine or plasma) are relatively scarce. A study 
that investigated the effect of air pollution on 8-oxo-dG 
measured in human leukocytes by LC-MS/MS observed 
some associations between exposure and the adduct level; 
however the effect was different across the three locations 
included in the study (237). 
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In addition to interaction of oxidizing agents with DNA, 
processes such as lipid peroxidation can lead to DNA adduct 
formation. As an example, 4-hydroxy-2-nonenal, a product 
of lipid peroxidation, can form the promutagenic adducts 
1,N6-etheno-2-deoxyadenosine (εdA), and 3,N4-etheno-2'-
deoxycytidine (εdC). A study by LC-ESI-MS/MS showed 
that levels of εdA and εdC in urine of workers exposed to 
diesel engine exhaust were higher than in the control group, 
while there was no significant contribution of smoking to 
the levels of these adducts (238). Another product of lipid 
peroxidation—malondialdehyde—reacts with DNA to form 
3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]
purin-10(3H)-one deoxyguanosine (M1dG) (239). Several 
studies demonstrated that increased M1dG formation is 
associated with occupational and environmental exposures 
to air pollution, smoking, increased cancer risk, and tumor 
progression (240-244). However, most of these studies 
used the 32P-postlabeling technique, and new studies using  
MS-based assays are needed. A recently developed LC-NSI-
HRMS/MS method for the analysis of M1dG in human 
leukocyte DNA showed no difference in the adduct levels 
between smokers and nonsmokers (245). 

Metals 

Particles in polluted air and cigarette smoke can contain 
metals and metalloids on their surface, including those 
capable of inducing oxidative stress either directly or 
through the Fenton reaction (121,246,247). Mechanistic 
and laboratory animal studies show that such exposures can 
induce inflammatory processes in lung tissues (247-249).  
Multiple studies of environmental and occupational 
exposures to metals investigated the association of such 
exposures with oxidative stress and inflammation. Metal 
exposures are typically measured by their analysis in 
urine or blood by either inductively coupled plasma MS 
(ICP-MS) or atomic absorption spectroscopy (AAS) 
methods (250-252). For example, Hu et al. studied the 
effect of occupational exposure to As on oxidative stress 
in semiconductor workers by analyzing levels of urinary 
inorganic arsenic (iAs3+, iAs5+), monomethylarsonic acid, 
and dimethylarsinic acid by HPLC with flow injection AAS, 
and urinary 8-OH-dG by LC-MS/MS (250). Their results 
showed elevated levels of these biomarkers in exposed 
workers compared to controls, and an association between 
urinary 8-OH-dG and As biomarkers. The impact of As 
exposure on inflammatory processes was also observed 
in copper smelters in Poland (253). Studies of non-

ferrous metal smelter workers who were occupationally 
exposed to Pb and/or Cd showed an association between 
the levels of these metals in various biological matrices 
and α-glutathione-S-transferase, a biomarker of proximal 
tubular injury in nephrotoxicity (254,255). Another study 
of the effects of As, Cd, Cr, Ni, and Pb exposure in male 
coke-oven workers in China showed an association between 
urinary levels of such metals and biomarkers of oxidative 
stress, as well as an effect of interaction between metal and 
PAH exposure on oxidative markers (256). 

Environmental exposures to metals have also been 
widely investigated. A cohort panel study involving 97 
elderly subjects living in the Los Angeles metropolitan area 
showed significant positive associations between biomarkers 
of airway oxidative stress and inflammation and traffic 
pollution-related metal exposures (257). Metallothionein 
levels in blood were used as a biomarker of exposure to 
metals in local fishermen in Abu Qir Bay, Egypt (258). 
The study showed high levels of metallothionein in 
fishermen’s blood, and its association with the levels of 
Cd, Cu, Pb, Cr, and Zn. Metabolomics approaches were 
also employed to investigate the impact of environmental 
metal exposures on health outcomes. A study of highway 
commuters applied LC-MS high-resolution metabolomics 
to analyze the relationship between in-vehicle particulate 
exposures to Al, Pb, and Fe and metabolomic profiles 
as well as targeted inflammatory biomarker levels (259). 
The measured exposures and changes in inflammatory 
biomarkers were associated with metabolomics-identified 
molecular alterations that reflected changes in arachidonic 
acid, leukotrienes, and tryptophan metabolism, suggesting 
that traffic-associated exposures to metals may induce a 
broad inflammatory response. Another metabolomics study 
also showed that increased environmental metal exposure 
was associated with various oxidative stress-related effects, 
such as antioxidant depletion, increased lipid peroxidation, 
and changes in mitochondrial lipid metabolism (260). Other 
studies are also supportive of the role of environmental 
metal exposures in inflammatory processes and the 
associated health outcomes, including cardiovascular and 
neurotoxic effects (261-263).

Childhood exposures to metals were also studied. The 
effect of exposure to As and Cd and urinary 8-OH-dG 
was shown in environmentally exposed pregnant women 
in rural Bangladesh, indicating that such exposures may 
play a role in birth outcomes (252). A study of Cr exposure 
in households adjacent to Cr waste sites in New Jersey 
showed a statistically significant relationship between 
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log-transformed urine Cr concentration and Cr dust 
concentration, and age-stratified analyses revealed that 
exposures in young children accounted for much of the 
relationship in the entire population (264). Dust levels of 
Pb were associated with blood biomarker levels in infants 
near the Tar Creek Superfund Site (Oklahoma, USA) (265). 
Deciduous teeth also have been used for the investigation 
of in-utero and early childhood exposures to Pb, suggesting 
airborne pollution as the primary source and exposure 
pathway (266). Analysis of Pb and Cd in blood of preschool 
children living in the vicinity of industrially contaminated 
sites in Poland showed higher levels of these biomarkers in 
children living closer to the sources of exposure as well as 
in those living with mothers who smoke at home (267). A 
targeted study of the effect of secondhand smoke exposure 
on metal uptake in children analyzed urinary levels of 23 
trace elements (Li, Be, B, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, 
Ga, Rb, Sr, Cd, Sn, Sb, Te, Cs, Tl, Pb, Bi, U) in a sample of 
Italian schoolchildren, showing an independent association 
between smoke exposures at home and urinary levels of Li, 
Ti, V, Co, Ga and Sr (251). A study in Sweden also showed 
a positive association between urinary Cd and Pb and the 
levels of urinary cotinine, a biomarker of nicotine intake, in 
secondhand smoke-exposed children (268). 

Distinguishing exposures from cigarette 
smoking versus air pollution

A particularly important question is how to use biomarkers 
to separate the potential health impacts of cigarette smoking 
from those of ambient air pollution in epidemiological 
studies. Cigarette smoke is frequently the major source 
of exposure to carcinogenic combustion products such 
as PAH, benzene, and metals which are also important 
constituents of polluted air. Furthermore, cigarette smoke 
is an established cause of oxidative damage. In this section, 
we discuss several well-established biomarkers—cotinine, 
total nicotine equivalents, anatabine, anabasine, and 
NNAL—which are specifically related to cigarette smoking 
and related practices and can be used to assess the role of 
smoking in toxicant and carcinogen exposure. 

Cotinine

Nicotine is the critical constituent of tobacco products that 
is responsible for their addictive properties (269). Nicotine 
is not a particularly useful biomarker due to its relatively 
short half-life of approximately 2 h. Cotinine is the major 

metabolite of nicotine and a useful biomarker because of its 
relatively long half-life (8–30 h). Cotinine can be quantified 
in a number of readily available biological fluids including 
blood, saliva, and urine. Large studies have investigated levels 
of cotinine that distinguish cigarette smokers from non-
smokers who may be exposed to secondhand smoke, usually 
in indoor environments. For example, the NHANES study 
from 1990 to 2004 concluded that a serum cotinine level of 
3 ng/mL distinguished cigarette smokers from non-smokers, 
while a study in the United Kingdom determined a level of 
12 ng/mL in saliva (270,271). A free cotinine level of about 
30 ng/mL urine distinguishes smokers from non-smokers. 

There are other sources of nicotine exposure that 
need to be considered. These include the use of nicotine 
replacement products and e-cigarettes, which both deliver 
substantial amounts of nicotine resulting in cotinine levels 
similar to those observed in cigarette smokers. However, 
these products do not deliver PAH or most volatiles in 
significant amounts.

Total nicotine equivalents

Total nicotine equivalents, determined in urine by LC-MS/
MS, encompasses nicotine, cotinine, and 3'-hydroxycotinine 
plus their glucuronides, and in some cases nicotine-N-oxide 
and other minor metabolites as well (272). Total nicotine 
equivalents are considered the gold standard for determining 
nicotine dose because all major metabolites are quantified. 
For the purpose of distinguishing exposure to cigarette 
smoke versus air pollution, it does not have any significant 
advantages over cotinine, and has similar limitations such as 
use of other nicotine containing products.

Anatabine and anabasine

Anatabine and anabasine are minor tobacco alkaloids 
which are present in all tobacco products but not in 
nicotine replacement products. Therefore, analysis of these 
compounds in urine by LC-MS/MS can confirm tobacco 
product use. Mean levels of anatabine, anabasine, and 
total nicotine equivalents in the urine of 827 smokers were  
39.9 pmol/mL, 52.8 pmol/mL, and 56.4 nmol/mL, 
respectively. Levels of anatabine and anabasine correlated 
with those of total nicotine equivalent (273).

NNAL

NNAL is a metabolite of the tobacco-specific carcinogen 
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4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 
which is found exclusively in tobacco products, not in 
nicotine replacement products or electronic cigarette  
vapor (274). NNAL and its glucuronides, termed total 
NNAL, are major metabolites of NNK in all vertebrates 
including humans. Total NNAL is most commonly 
measured in urine by LC-MS/MS and can be used to 
distinguish tobacco use or secondhand smoke exposure 
from environmental pollution because of its absolute 
specificity to tobacco products. Another advantage of 
NNAL as a biomarker is its relatively long urinary half-life 
of 10–45 days. Secondhand smoke exposure typically results 
in urinary NNAL levels of 0.03–0.08 pmol/mL (274).

Conclusions 

We have presented a summary of the most important 
and widely used chemically specific biomarkers which 
can be applied in molecular epidemiology studies of air 
pollution and cancer. We have focused on biomarkers 
which can be determined by state-of-the-art analytical 
chemistry methods, mostly using mass spectrometry. All 
methods discussed here have been widely applied and are 
fully validated. We conclude that the following chemically 
specific biomarkers are currently the optimal ones for use 
in studies of air pollution and cancer: urinary 1-OHP, 
Phe metabolites, SPMA, urinary or blood Cd, 8-OH-dG  
and 8-iso-PGF2α. This suite of biomarkers will reliably 
establish exposure to carcinogenic PAH, benzene and Cd, 
and will also provide critical information on oxidative 
damage and inflammation, both of which are important 
in carcinogenesis. Furthermore, we strongly recommend 
analysis of the same samples for cotinine or NNAL in order 
to reliably assess the contribution of tobacco use. 
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Table S1 Concentrations of pyrene, phenanthrene and benzo[a]pyrene in cigarette smoke, air and food

Sample type Concentration [mean ± SD (range)] Reference

Pyrene

Mainstream smoke (ng/cigarette) 42±7.1 (8.1±0.9–70±13) (275)

 37±19 [11–91] (276)

Indoor/outdoor air (ng/m3) 0.33 (ND–24.0)/1.59 (0.05–208) (UK, 2011) (277)

0.877/0.121 (Los Angeles, US, 2002) (278)

1.114/0.8775 (Houston, US, 2002) (278)

1.148/0.645 (Elizabeth, US, 2002) (278)

108.3 (3.6–272.6)/66.9 (10.4–547.8) (China, 2007) (279)

Grilled meat (ng/g) 9.23 (ND–82.9) (280)

Fried meat (ng/g) 2.74 (ND–22.6) (280)

Phenanthrene

Mainstream smoke (ng/cigarette) 159±23 (28±2.2–431±39) (275)

119±66 [34–307] (276)

Indoor/outdoor air (ng/m3) 0.34 (ND–6.42)/1.01 (0.01–30.7) (UK, 2011) (277)

6.832/1.01 (Los Angeles, US, 2002) (278)

10.019/5.411 (Houston, US, 2002) (278)

13.054/6.561 (Elizabeth, US, 2002) (278)

351.7 (135.2–963.4)/181.4 (49.3–969.7) (China, 2007) (279)

Grilled meat (ng/g) 11.1 (ND–80.3) (280)

Fried meat (ng/g) 5.89 (ND–15.7) (280)

Benzo[a]pyrene

Mainstream smoke (ng/cigarette) 10±1.2 (2.1±1.0–22±0.8) (275)

15±9 [4–44] (276)

8.8–15.8 (281)

Indoor/outdoor air (ng/m3) 0.1 (ND–4.91)/0.19 (ND–2.52) (UK, 2011) (277)

0.0137/0.0061 (Los Angeles, US, 2002) (278)

0.0067/0.0068 (Houston, US, 2002) (278)

0.0055/0.045 (Elizabeth, US, 2002) (278)

95.7 (7.7~380.3)/27.9 (0.9~271.5) (China, 2007) (279)

Grilled meat (ng/g) 0.33 (ND–2.18) (280)

Fried meat (ng/g) 0.39 (ND–1.95) (280)

SD, standard deviation; ND, not detectable.

Supplementary



Table S2 Urinary 3-OHBaP concentrations in various subjects in recent studies

Subjects Country 3-OHBaP level Reference

Prebake aluminum electrode production workers France (282)

Pre-shift (N=6) 0.29±0.28 nmol/mol creatinine (mean ± SD)

Post-shift (N=6) 0.23±0.21 nmol/mol creatinine 

Non-occupational exposure population France (14)

Smokers (N=13) 0.029±0.024 nmol/mol creatinine (mean ± SD)

Nonsmokers (N=23) 0.010±0.005 nmol/mol creatinine 

Non-occupational exposure population Italy (52)

All subjects (N=200) 0.03±0.05 nmol/L (mean ± SD)

Smokers (N=39) 0.04±0.07 nmol/L 

Nonsmokers (N=97) 0.03±0.04 nmol/L

Exsmokers (N=64) 0.03±0.04 nmol/L

Non-occupational exposure population Italy (283)

All subjects (N=1,016) 0.079 (0.0268–32.0) ng/g creatinine [median (5th–95th) percentile]

Smokers (N=269) 0.068 (0.0231–32.0) ng/g creatinine 

Nonsmokers (N=747) 0.084 (0.0282–32.0) ng/g creatinine

Smokers (N=7) Germany 0.606±0.220 ng/g creatinine (mean ± SD) (50)

Nonsmokers (N=7) 0.115±0.066 ng/g creatinine

3-OHBaP, 3-hydroxybenzo[a]pyrene; SD, standard deviation.



Table S3 Urinary phenanthrol concentrations in various subjects in recent studies

Country Subject categories Analytes Levels Reference

China Coke oven workers 
(nonsmokers)

(64)

Control group (N=384) 1-OHPhe 0.61 (0.05–3.36) μg/mmol creatinine [median 
(5–95%)]

2-OHPhe 0.25 (0.04–1.48) μg/mmol creatinine

3-OHPhe 0.27 (0.03–1.17) μg/mmol creatinine

4-OHPhe 0.39 (0.00–1.76) μg/mmol creatinine

9-OHPhe 0.60 (0.10–4.27) μg/mmol creatinine

Low exposure group 
(N=545)

1-OHPhe 0.70 (0.11–3.46) μg/mmol creatinine

2-OHPhe 0.31 (0.05–1.19) μg/mmol creatinine

3-OHPhe 0.33 (0.03–1.19) μg/mmol creatinine

4-OHPhe 0.33 (0.00–1.80) μg/mmol creatinine

9-OHPhe 0.65 (0.16–4.30) μg/mmol creatinine

Intermediate exposure 
group (N=325)

1-OHPhe 1.11 (0.24–6.13) μg/mmol creatinine

2-OHPhe 0.39 (0.10–1.77) μg/mmol creatinine

3-OHPhe 0.50 (0.04–1.54) μg/mmol creatinine

4-OHPhe 0.32 (0.00–2.44) μg/mmol creatinine

9-OHPhe 0.84 (0.22–3.90) μg/mmol creatinine

High exposure group 
(N=79)

1-OHPhe 1.73 (0.26–5.02) μg/mmol creatinine

2-OHPhe 0.76 (0.24–2.73) μg/mmol creatinine

3-OHPhe 1.13 (0.28–4.45) μg/mmol creatinine

4-OHPhe 0.40 (0.03–2.97) μg/mmol creatinine

9-OHPhe 0.98 (0.16–3.64) μg/mmol creatinine

China General population (N=84) 2-OHPhe 581 [323] pg/mL [mean (median)] (31)

3-OHPhe 714 [387] pg/mL

4-OHPhe 351 [217] pg/mL

9-OHPhe 83 [33] pg/mL 

U.S. Mexican Americans (N=317) 1-OHPhe 115 (91.3–146) pg/mL [GM (95% CI)] (30)

2-OHPhe 56.3 (43.9–72.1) pg/mL 

3-OHPhe 54.8 (42.1–71.2) pg/mL 

4-OHPhe 19.7 (16.2–24.0) pg/mL 

Non-Hispanic blacks (N=664) 1-OHPhe 141 [129–155] pg/mL 

2-OHPhe 78.9 (72.3–86.2) pg/mL

3-OHPhe 92.6 (84.3–102) pg/mL

4-OHPhe 28.4 (26.0–31.0) pg/mL

Non-Hispanic whites (N=814) 1-OHPhe 126 [117–136] pg/mL 

2-OHPhe 58.3 (54.7–62.2) pg/mL 

3-OHPhe 58.2 (54.3–62.4) pg/mL 

4-OHPhe 19.4 (18.3–20.5) pg/mL 

All Hispanics (N=573) 1-OHPhe 125 [108–146] pg/mL

2-OHPhe 62.2 (52.7–73.4) pg/mL

3-OHPhe 61.3 (51.2–73.3) pg/mL

4-OHPhe 21.0 (18.5–23.8) pg/mL 

Asians (N=352) 1-OHPhe 91.3 (75.3–111) pg/mL 

2-OHPhe 50.3 (40.5–62.4) pg/mL 

3-OHPhe 50.0 (39.8–62.9) pg/mL 

4-OHPhe 16.8 (14.7–19.1) pg/mL

African Americans (N=358) 3-OHPhe 1.06 (0.984–1.14) pmol/mL (284)

Native Hawaiians (N=321) 3-OHPhe 0.605 (0.559–0.654) pmol/mL 

Whites (N=432) 3-OHPhe 0.713 (0.667–0.762) pmol/mL 

Latinos (N=448) 3-OHPhe 0.784 (0.734–0.837) pmol/mL 

Japanese Americans (N=695) 3-OHPhe 0.593 (0.562–0.626) pmol/mL 

Iran Never tobacco users (N=58) 1-OHPhe 247.1 (213.9–285.5) ng/g creatine [GM (95% CI)] (29)

∑2,3-OHPhe 300.3 (250.4–360.3) ng/g creatine

Exclusive cigarette smokers 
(N=33)

1-OHPhe 264.5 (227.4–307.8) ng/g creatine

∑2,3-OHPhe 482.9 (371.5–627.6) ng/g creatine

Exclusive waterpipe smokers 
(N=37)

1-OHPhe 392.0 (309.6–496.4) ng/g creatine

∑2,3-OHPhe 753.0 (530.0–1069.8) ng/g creatine

Exclusive nass smokers 
(N=30)

1-OHPhe 223.6 (181.6–275.2) ng/g creatine

∑2,3-OHPhe 407.7 (275.2–604.1) ng/g creatine

U.S. Cigarette smokers (N=885) 1-OHPhe 197 [178–218] pg/mL [GM (95% CI)] (33)

2-OHPhe 112 [102–122] pg/mL 

3-OHPhe 138 [120–158] pg/mL 

4-OHPhe 38.2 (35.3–41.3) pg/mL 

Nonsmokers (N=1,300) 1-OHPhe 114 [106–123] pg/mL 

2-OHPhe 53.2 (49.5–57.2) pg/mL

3-OHPhe 48.0 (44.2–52.2) pg/mL

4-OHPhe 17.4 (16.3–18.7) pg/mL

Phe, phenanthrene; CI, confidence interval; GM, geometric mean.
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